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Chip-based microcolumn separation systems often re-
quire serpentine channels to achieve longer separation
lengths within a compact area. However, analyte bands
traveling through curved channels experience an in-
creased dispersion that can reduce the benefit of in-
creased channel length. This paper presents analytical
solutions for dispersions, numerical models for minimiz-
ing dispersion in microchannel turns, and experiments
used to validate numerical models and to demonstrate the
effectiveness of dispersion—reduction schemes. An ana-
lytical solution for the geometric dispersion caused by a
constant radius turn is presented. We also propose
metrics for characterizing the performance of miniaturized
electrophoresis systems that utilize dispersion-introduc-
ing turns. The analytical solution and metrics can be used
to determine when compensating turns should be used
and when these turns are either not necessary or ineffec-
tive. For situations where a constant radius turn intro-
duces significant geometric dispersion, numerical shape
optimization routines were used to determine optimal
geometries that minimize geometric dispersion while
limiting reductions in channel width. Experiments using
photobleached-fluorescence and caged-fluorescence vi-
sualization were conducted to validate the employed
numerical models and to verify the turn designs proposed
here.

Pioneered in the early 1990s, on-chip capillary electrophoresis
(CE) is an important separation technique for microfluidic
devices.! Several studies have demonstrated the potential benefits
of miniaturizing capillary electrophoresis on microfabricated chips.
These benefits include portability, reduced reagent use, and
increased opportunities for parallel analyses.? Since the separation
efficiency of CE increases with the length of the separation

* Corresponding author: (voice) 650-725-1595; (fax) 603-962-5695; (e-mail)
jmolho@mems.stanford.edu.
(1) Manz, A.; Harrison, D. J.; Verpoorte, E.; Widmer, H. M. Adv. Chromatogr.
1993, 33, 1-66.
(2) Effenhauser, C. S. Top. Curr. Chem. 1998, 194, 51—-82.

1350 Analytical Chemistry, Vol. 73, No. 6, March 15, 2001

channel, longer channels are often desirable. However, confining
such channels to a small area requires configurations with multiple
channel turns (e.g., serpentine channels). Such turns add disper-
sion to analyte bands and therefore reduce the benefit of increased
channel length.

Culbertson et al.? presented a study of dispersion caused by
constant radius turns where the radius of curvature is at least 2.5
times greater than the width of the channel. Culbertson et al. noted
that the dispersion created by microchannel turns is caused by
differences in both path length and electric field strength in the
turn. The general result of the Culbertson et al. model is illustrated
schematically in Figure 1. For constant radius turns, the skew,
or amount that the inside of the band leads the outside of the
band, is equal to 26w, where 6 is the angle of the turn and w is
the width of the turn. In the case where diffusion is negligible,
this skew can be related to the additional variance introduced by
the turn,* oym? = (skew)/12. Culbertson et al. proposed an
empirical model to account for the effect of transverse diffusion
in the turn and calibrated this model with data from separation
experiments using constant radius, 180° turns.

Using the result of Culbertson et al. that the turn dispersion
decreases with the turn width, Paegel et al’ explored the
effectiveness of symmetrically tapering channels to a more narrow
width before entering the turn. Paegel et al. found this turn
geometry to be effective, although the effect of complimentary
turns (one turn followed by a turn of equal angle but opposite
direction as has been discussed by Culbertson et al.%) played a
significant role in reducing dispersion in their experiments. In
addition, Paegel et al. noted that introducing constrictions into
the channel can be detrimental, thus suggesting that a tradeoff
exists between reducing turn dispersion and avoiding excessive
channel constrictions. For example, Paegel et al. found that the
constricted regions of their turns have high electric fields that
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Figure 1. Schematic of the effect of a 90°, constant radius turn on
an analyte band. The band is “skewed” as it travels through the turn
with molecules near the inside of the turn racing ahead of the
molecules near the outside of the turn. This skewing of the analyte
band has been called the “racetrack effect”.

adversely affect the mobility of longer DNA molecules. In general,
constricting channels may cause increased Joule heating and
temperature rise in the turn.

Griffiths and Nilson® developed an analytical model for the
dispersion caused by constant radius turns. This model was
rigorously developed for the limit of high and low Peclet number
(i.e., high and low analyte diffusivity) and then a composite
solution was proposed by constructing a function with the correct
limiting behavior. Griffiths and Nilson compared their model with
the model of Culbertson et al. and concluded that differences
between the two models are negligible when the appropriate
effective width (for channels with sloped side walls) is used in
the models.

Culbertson et al. presented a separation system that utilizes a
large-radius, spiraling channel to reduce the dispersion caused
by turns.” Although this design achieves a 25-cm total separation
length, the footprint of the chip is 5 cm on a side. This spiral
channel design may not be effective in more compact designs.

We previously reported initial turn designs that reduce turn
dispersion by combining asymmetric tapers and changes in
channel width.8° The current work develops analytical models for
characterizing constant radius turns and serpentine channels
composed of dispersion-introducing turns. Using simulations and
experiments, we then design and test compact, two-dimensional
turns that reduce geometric dispersion while limiting constrictions
in microchannel widths as much as possible.

THEORY
This section begins with an overview of the scaling arguments

relevant to CE and compact fluidic channel design. The advec-
tion—diffusion equation is then used to establish various regimes
of dispersion that are of interest to designers of miniaturized
electrokinetic separation systems.

Scaling Arguments. Consider an electrophoretic separation
of two analytes. Some separation time after the application of an
axial electric field, the two bands will separate a distance AL and
the concentration distribution of each analyte will have a standard
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deviation, 0. Equation 1 defines the separation resolution, SR, for

SR = AL/o 1)

the two analyte bands.

The analyte bands will travel a distance that is equal to the
product of the average mobility of the analytes, the average electric
field in the channel, and the total separation time. Assuming the
sources of dispersion act independently, the total variance (¢0?) is
a sum of contributions from the initial injection (0%y), turns
(0%wms), and diffusion.

(Aulp, )L

SR =
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= (Mu/u VN (2)

Equation 2 gives an expression for the separation resolution,
where Au, uay, L, D, and N are the difference in mobility between
the analytes, average electrokinetic mobility, separation length,
diffusion coefficient, and number of theoretical plates, respectively.
For calculating SR, the maximum or average diffusion coefficient
of the two analytes can be used. For ideal, diffusion-limited
separations, SR scales as (EL)Y2. Note that expressing the scaling
argument above in terms of electric field and length, rather than
potential, is more appropriate since the optimal separation field
in microfabricated systems is often limited by the dispersion
associated with Joule heating in the channel® and not by a
maximum supply voltage. In such thermally limited cases,
increases in the separation length can be used to enhance the
separation resolution. To satisfy the requirements of compact chip
design, serpentine channels offer a useful layout solution.
Regimes of Advection—Diffusion of Analyte Bands. To
address how diffusion will affect the amount of skew caused by a
turn, consider the two-dimensional, nondimensionalized advec-
tion—diffusion equation!! (eq 3), where u’, ¢, t', X', and y' are the

8c'+ u,ac' _Liw 9%’ +£ 9%
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diffusion  diffusion

normalized velocity, concentration, time, axial channel dimension,
and transverse channel dimension, respectively.

The dispersion Peclet number, Pe'y, is a nondimensional
parameter that characterizes the ratio of advective-to-diffusive
transport rates of analytes; Pe', = U'w/D, with w the width of the
channel. The appropriate dispersion velocity scale, U’, associated
with the calculation of Pe'y, is the maximum velocity difference
along the direction transverse to the microchannel. In the case
of turn dispersion, the dispersion velocity is proportional to the
average electrokinetic velocity in the channel. For a constant
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Figure 2. L/wvs Pe',, regimes with mapping of previous experi-
mental studies involving microchannel turn dispersion. Also plotted
for reference is a coiled capillary (50 cm long, 50 um diameter, 10
cm coil radius). The investigations shown are as follows: (a) coiled
capillary, (b) large radius, spiraled separation channel,” (c) study of
180°, constant radius turns, (d) study of symmetrically tapered 180°
turns,® and (e) experiments in the current work. Pe',, and L/w for the
previous studies listed above were estimated from published descrip-
tions of turn length, channel widths, analyte diffusivities, and separa-
tion velocities. Pictorial organization of advection—diffusion regimes
adapted from Probstein.1t

radius turn, as in Figure 1, the skew is 26w. Thus, the dispersive
velocity component is approximately 2(w/r;)U, where U is the
average electrokinetic velocity and r. is the radius of curvature at
the center of the channel. In applying eq 3 to the analysis of
electrokinetic turn dispersions, L should be defined as the axial
length of the turn, which is usually on the order of 10w.

In a manner similar to Probstein,!* we have identified three
regions in the parameter space of Pe'y and L/w that are most
relevant to dispersion studies of dilute solutes in electrokinetic
microchannels. Figure 2 maps the current work and previous turn
dispersion studies into the parameter space of eq 3. The three
regimes of this equation are discussed below in the context of
analyte dispersion in electrokinetic channels.

Axial Diffusion Limit, Pe'y, < 1. When P¢',, is very small,
the diffusion terms on the right side of eq 3 will dominate the
dispersion of the analyte band. The geometry-determined velocity
field influences the analyte band most strongly through the
advection term, and hence, the geometry has relatively little
influence on dispersion when Pe'y, is very small. The dispersion
of an analyte band in this regime is shown schematically in Figure
3a. In this limit, the design of the turn geometry and the associated
velocity gradients in the turn are unimportant since axial diffusion
will always dominate the dispersion of the sample band. For this
reason, the axial diffusion-limited regime will not be considered
further.

Taylor—Aris Limit, L/'w > Pe'y, > 1. When P¢'y, is greater
than unity but less than L/w, both advection and transverse
diffusion are important to the evolution of the analyte band. The
dispersion of an analyte band in this regime is shown schemati-
cally in Figure 3b. This regime has been described by Taylor?
and Aris®? and is applicable to microfabricated CE systems that
use long, large-radius, spiral-shaped channels to increase separa-
tion resolution. In such systems, transverse diffusion acts to
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Figure 3. Schematic illustration of the dispersion of an analyte band
traveling through a constant radius turn for the different regimes of
eq 3. The breakaway symbols on the horizontal section of the
channels denote a long development length. Each frame depicts the
shape of the analyte band as it enters a turn, after the turn, and after
it has traveled through a straight channel section to the next turn.
The different regimes depicted are as follows: (a) the pure axial
diffusion limit, (b) the Taylor—Aris limit, (c) the pure advection limit
through the turn with Pe,, < 100 Ly/w, and (d) the pure advection
limit through the turn with Pe,, > 100 Ly/w.

prevent asymmetric stretching of analyte bands, but results in axial
dispersion that exceeds that due to axial diffusion alone. The
dispersion in this regime is often modeled using an effective
diffusion coefficient, as is the case for describing dispersion caused
by pressure-driven flow in CE.

Pure Advection Limit, Pe'y, > L/w. In the regime where
Pe'y is greater than L/w, the advection term in eq 3 dominates
the diffusion terms and the geometry of the channels has the most
influence on the evolution of the analyte band. The dispersion of
an analyte band traveling through a turn in this regime is shown
schematically in Figure 3c and d. In the current work, we will
reduce turn dispersion by altering the geometry of the turn; we
expect these designs to perform best at high Pe'y, as the modified
velocity field u" will have the most effect in this regime.

An important subset of the pure advection regime occurs when
Pe', > L/wand wU/D > L/w, where Ly, is the distance between
turns and U is the average electrokinetic velocity in the micro-
channel. In this case, the analyte band does not diffuse substan-
tially either through the turn or as it travels from one turn to the
next, as shown schematically in Figure 3d. Any dispersion caused
by the first turn can be “undone” if the next turn is complimentary
(equal in angle but opposite in direction to the first turn). We
suggest that dispersion reduction from complimentary turns
becomes significant when w?/D > 100 Ly/U, which is equivalent
to Pe, >100 Ly /w. Here, Pe,, is the Peclet number based on the
average electrokinetic velocity. This condition states that the time
required for a molecule to diffuse across the width of the channel
should be at least 100 times longer than the time required for
the analyte band to travel the distance between turns. This case
is relevant to, for example, microchip electrophoresis of DNA
using gels or other matrix materials that reduce the diffusion
coefficient, such as the turn dispersion studies that were per-
formed by Paegel et al.® To test their turn designs, Paegel et al.
filled their channels with a sieving matrix and electrophoretically
separated an Haelll digest of ¢X174 bacteriophage DNA. The
DNA was separated at 300 V/cm, and the median fragment
velocity (estimated here from the reported electropherograms)
was ~1200 um/s. Paegel et al. reported the diffusion coefficient
for the DNA fragments as 1.0 x 1077 cm?/s, and the separation
was performed in channels with an average width of ~124 um



(estimated from the reported wet-etched top width of 138 um and
depth of 14 um). We estimate from the descriptions of their system
that the distance between turns was ~1.1 cm. For these conditions,
the Pe,, number is ~15 000 and Pe,/(Ly/w) = 170. This analysis
suggests that complimentary turns were a source of dispersion
reduction in the Paegel et al. experiments.

As discussed above, when considering the dispersion caused
by turns, Pe'y is some fraction of Pe,. Therefore, the turn
dispersion reaches a maximum above a certain value of Pe,.
However, when Pe,, increases further, so that Pe, > 100 Ly/w,
complementary turns can be used to reduce the turn dispersion.
Therefore, modified turn geometries designed to reduce turn
dispersion are most needed when the turn dispersion is in the
pure advection regime but Pe, < 100 Ly/w, as shown in Figure
3c. In the next section, we develop an analytical model for the
turn dispersion caused by constant radius turns. This model will
be used to quantitatively determine the regimes described above.

ANALYTICAL MODELS
Geometric Dispersion by Constant Radius Turns. In this

section, we develop an analytical model for the dispersion caused
by constant radius turns; this model spans all the regimes of the
advective—diffusion equation discussed above. The geometric
dispersion is modeled as being caused by a straight channel
section identical in length to the turn and having a simple linear
velocity profile given by eq 4. This approximate velocity profile

u(y) = U(l + ‘;—"(1 - 2y/w)) (4)

accounts for the differences in both electric field strength and
travel distance at different radial locations in the turn (i.e., the
racetrack effect). The dispersive portion of this velocity profile is
2w/r. times the average electrokinetic velocity.

Here, y is the distance from the inner channel wall, w is the
width of the channel, and r. is the radius of curvature along the
center of the channel. The velocity profile proposed here is most
accurate when r, > w, but it can accurately predict the increased
sample variance caused by the turn for r, > w.% Given the velocity
profile of eq 4, we use the moment method proposed by Aris®® to
determine the variance increase caused by the turn. We have
simplified the analysis by assuming that the analyte band entering
the turn is either symmetric or antisymmetric about the centerline
of the channel. This condition holds for both a plug profile and
the skewed shape shown in Figure 1. An outline of the full analysis
is given in Appendix A; the resulting solution is shown in eq 5.

OZ tturn 2 bt 1- exp(—(nn)zltmm)

— =— — 192t Z (5a)
Ozmax 5 . n=135.. (nﬂ)8
Pe, W Pe
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or, Liyrn/W
P ax = (260W)*/12 (50)

We define the turn transport ratio, tym, as the ratio of the time
for an analyte molecule to diffuse across the width of the channel
to the time needed for an analyte molecule to be advected through
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Figure 4. Turn variance ratio vs transport ratio, tyn for a 180°
constant radius turn. The maximum turn variance, 0max, is equal to
02/[(20w)?/12]. The solid line is eq 5 and the dotted lines are the
empirical model proposed by Culbertson et al.® and the analytical
model proposed by Griffiths and Nilson.®

the turn. The turn introduces a maximum amount of geometric
variance as tym approaches infinity.

The infinite series in eq 5 converges very rapidly, so if tym is
less than 104, the truncation error is less than 1% when only the
first five terms of the series are used. Equation 5a is plotted in
Figure 4 and compared to the models proposed by Culbertson et
al.® and Griffiths and Nilson.® The Griffiths and Nilson model
differs by no more than 12% from eq 5. We note that eq 5 was
derived for all values of ty,m, while the Griffiths and Nilson model
was only rigorously derived for the high- and low-Peclet number
limits. Equation 5 is similar to the Culbertson et al. model for tym
< 10; however, the Culbertson et al. model converges to (26w)%/
24 (for tym > 10), with the factor 24 determined by a fit to
experimental measurements for 0.1 < tym < 10. The closed-form
solution for the turn variance (eq 5) yields a theoretical limit of
0max = (20W)2/12 as tym approaches infinity. This limit results
directly from the assumed velocity profile, eq 4, that was chosen
so that, for infinite ty,, the skew is 26w, as shown schematically
in Figure 1. As discussed by Griffiths and Nilson,® Culbertson et
al. used the width at the top of isotropically etched channels to
calibrate their empirical model, which explains the discrepancy
between the Culbertson et al. model and eq 5. Since the profile
of isotropically etched channels is usually semicircular or “D-
shaped,” using the average channel width gives closer agreement
between the Culbertson et al. model and eq 5.

Figure 4 allows a more quantitative determination of the
dispersion regime governing the behavior of a constant radius
turn. When ty < 1, the dispersion is in the Taylor—Aris limit,
corresponding to the first, linear term, ty,m/5, of eq 5a. For tym >
100, the turn variance is greater than 96% of o%ma as given in eq
5c and thus the dispersion is in the pure advection regime. When
1 < tym < 100, the dispersion is in a transition range where the
complete solution of the variance is expressed by eq 5. The turn
dispersion will often be in the pure advection regime for a typical
on-chip separation. For example, a chip-based separation system
with 100-um-wide channels, analyte velocities on the order of 500
um/s, and analytes with diffusivities on the order of 5 x 107
m?/s (e.g., serum albumin suspended in an aqueous solution#)
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would have a Pe,, equal to 1000. If Lym/w is on the order of 10,
then the transport ratio, tym will be 100, and thus, the turn
dispersion will be in the pure advection regime.

Comparing the Separation Resolution of Serpentine Chan-
nels and Straight Channels. We can evaluate a serpentine
channel by comparing its separation resolution to that of a straight
channel of equal length. To make this comparison, we calculate
the ratio of the serpentine channel separation resolution to the
separation resolution of a straight channel. This separation
resolution ratio, SRR, is shown in eq 6. Here, n is the number of

(O'inj/W)2 + 2/tchannel Ve

SRR = 5 2
(O W)* + N(oym/W)* + 2/t

©)

channel

turns, tehannel 1S the transport ratio (as defined in eq 5b) based on
the total channel length, and oy? is the additional variance caused
by each turn. Equation 6 assumes that each turn in the serpentine
channel adds the same amount of dispersion and that there is no
reduction in the cumulative turn dispersion because of compli-
mentary turns. When the injection variance, ois?, is large compared
to nowm?, the resolution is dominated by the effects of a relatively
large injection plug and SRR approaches unity. However, the
injection variance for microfluidic systems using cross-injection
techniques should be on the order of w2/12 while the variance
caused by a single constant radius, 180° turn is (2zw)2/12 (where
w is the width of the microchannel). SRR will also approach unity
for small tchannel, Since the turns are unimportant in the diffusion-
dominated regime. An interesting design rule can be extracted
from eq 6 by noting that the serpentine channel performs as well
as a straight channel when noym2/W? << 2/tcnannel OF approximately
when 100n0ym2/W? < 2/teamner. Therefore, a serpentine channel
performs as well as a straight channel of equal length when the
following criterion is met.

(L/wW)/n > 50 Pe,(0yyn /W) @)

Ineq 7, L is the total length of the serpentine channel. Note that
for large n, the left-hand side of eq 7 is the minimum distance
between turns (normalized by the channel width) for which the
variance caused by the turn is negligible compared to diffusion.
For smaller n, eq 7 is a more conservative estimate of the
minimum distance between turns required for negligible disper-
sion.

In many cases, a serpentine channel only needs to perform
better than a straight channel of shorter length. This would be
the case when designing a CE system within a compact area
where the longest linear dimension available is L,. For such a
system, a serpentine channel need only to perform better than a
straight channel of length L,. If the serpentine channel has
variance-adding turns, then the serpentine channel must be some
amount longer than L, just to overcome the additional variance
introduced by the turns. To solve for the additional length, we

(15) Overbeek, J. In Colloid Science, Kruyt, H., Ed.; Elsevier: Amsterdam, The
Netherlands, 1952; Vol. 1.

(16) Cummings, E. B.; Griffiths, S. K.; Nilson, R. H.; Paul, P. H. Anal. Chem.
2000, 72, 2526—2532.

(17) Reference deleted in proof.
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use eq 2 and set the separation resolution, SR, of the serpentine
channel of length L equal to some multiple, f, of the SR of the
shorter, straight channel of length L,. Solving for the ratio of L/L,
yields eq 8. Setting f = 1 gives the additional serpentine length

\

2
L o1 1 n %um Pe,,
Loy (240 lum Tw 8
L' |2 \/ R R T ®

required to match the separation resolution of the shorter, straight
channel. Note that solving eq 8 can be iterative since the number
of turns, n, is a function of L and the maximum allowable length
between turns.

Equation 8 assumes that Pe,, would be the same for both the
straight and serpentine channels, despite their differing lengths.
Since L > L,, the serpentine channel will require a proportionally
higher potential difference to maintain the same Pe,, as in the
shorter, straight channel. Although this may not be possible with
a power supply of limited maximum voltage, recall that increasing
the separation length is only beneficial when the maximum (i.e.,
thermally limited) field strength can be applied.

SIMULATION AND OPTIMIZATION
Similarity of Electroosmosis and the Electric Field. The

geometric dispersion model presented above does not directly
account for the effect of electroosmosis! in the turn. The existence
of electroosmosis in the turn increases the complexity of modeling
the velocity field because the electroosmosis couples the electric
field solution to the Navier—Stokes equations. However, as first
suggested by Overbeek,' low Reynolds number, steady electroos-
motic flow in microchannels with arbitrary geometry, and zero
pressure gradient has a velocity field that is everywhere parallel
(and linearly proportional) to the electric field. Recently, this
similarity was discussed by Cummings et al.’® The analysis
presented by Overbeek suggests that similarity holds for the
following conditions: a uniform ¢-potential, electric double layers
thin compared to the channel width, electrically insulating channel
walls, low Reynolds number (Re < 1), and parallel flow at inlets
and outlets.

The similarity condition between the electric field and the
electroosmosis is expressed in eq 9. Here, ¢, ¢, i, u, and E are

u(x, y) = —eCE(x, y)/1 ©)

the permittivity at the slip plane, the ¢-potential at the slip plane,
the viscosity at the slip plane, the local velocity, and the local
electric field, respectively. Note that eq 9 is essentially the
Helmholtz—Smoluchowski equation, shown to be valid throughout
the volume of the fluid. As long as the constraints listed above
are met, the flow in on-chip CE systems with electroosmotic flow
is identical to that in CE systems without electroosmotic flow,
except for a change in the effective electrokinetic mobility.
Numerical Models. Taking advantage of the similarity
between the electric and velocity fields in these systems, we model
the flow field in more complex turn designs by considering only
theoretical electrophoretic flow with an effective mobility, ues, that

(18) Reference deleted in proof.
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Figure 5. Parametrization of turn geometry for the reduced
parameter optimization. The corner is fully defined by the ratios of
constriction-to-width ratio (constriction ratio) and recovery length-to-
width ratio (recovery ratio).

takes into account the electroosmotic flow such that pesr = tteor +
Ueph, Where peqr and uepn are the electroosmotic and electrophoretic
mobilities of the wall and analyte, respectively. We have used two
numerical solvers in the current work: FLUMECAD, a com-
mercially available solver and visualization software for microflu-
idic problems (Microcosm Technologies, Inc.), and a custom
solver developed by Mohammadi.'® Both solvers perform similar
steps to determine the electrokinetic velocity field within a turn
design. First, the electric field inside the channel is solved by
assuming electrically insulating side walls, while the inlet and
outlet of the channel are held at constant potential. The straight
sections of the channel before and after the turn must be long
enough that imposing a uniform potential at the inlet and outlet
will not perturb the solution (typically three to four channel widths
in length). Next, the electrokinetic velocity in the channel is
determined with eq 9 and the effective mobility discussed above.
The absolute magnitude of the electrokinetic mobility is adjusted
to achieve the desired value of Pe,, or ty,, as defined previously
in the Analytical Models section. Finally, a Gaussian distribution
of dye is numerically introduced near the inlet of the turn and
then tracked as it is transported through the turn.

Reduced Parameter Shape Optimization. After obtaining
the numerical solvers needed to simulate the flow field of our turn
designs, we then applied our own optimization methods to
generate a geometry that minimizes turn dispersion. The first
optimization method employed simple shape parametrization. We
proposed a modified turn geometry that has a lengthened path
line along the inner portion of the turn and a constriction that
helps reduce transverse field gradients. This turn design, as shown
in Figure 5, is fully defined by specifying two nondimensional
geometric parameters: the ratio of the recovery length to the full
channel width and the ratio of the constriction width to the full
channel width. The geometry is further described by specifying
thatarcs 1, 2, and 3 in Figure 5 be tangent to each other and arcs
1 and 3 be tangent to the sides of the straight channels away from
the turn. The two ratios and the tangent conditions fully define
the geometry. This simple parametrization enables optimization
of the corner design through variation of the two parameters.

After defining the turn parametrization, we then varied the
input parameters over a range of values and determined the design

(19) Mohammadi, B. Int. J. Numer. Methods Fluids 1997, 25, 183—203.
(20) Mohammadi, B.; Molho, J.; Santiago, J. Comput. Methods Appl. Mech. Eng.
Submitted.

that adds the least amount of variance to an analyte band traveling
through the turn. This simple method of optimization provided
useful results, but this reduced parameter optimization method
limits the parameter space of turn designs.

Large Parameter Shape Optimization. To more generally
optimize the shape of the turn, we have employed a second
optimization technique based on the method of Mohammadi.’® A
full description of this optimization technique applied to micro-
channel turns will be presented elsewhere;? below we give a brief
overview of the algorithm. For this optimization process, an
appropriate cost function is defined (e.g., a quantity describing
the amount of dispersion associated with a turn design) and the
numerical optimization routine determines the geometric shape
that minimizes the cost function. Each point that describes the
discretized geometric shape of the turn is then treated as a
parameter to be varied in the minimization of the cost function.
The update of the geometrical shape in this method is fully
automated based on numerical estimates of the sensitivity of the
cost function to perturbation of each geometric parameter describ-
ing the electrokinetic channel wall. The natural cost function for
a compensating turn is the additional axial variance introduced
by the turn. However, an efficient computation of this cost function
is difficult as it depends on information in the entire simulation
domain. An approximation of this cost function is the skew, or
difference in travel times, of fluid particles traveling along the
inside and outside walls of the turn. This cost function can be
computed efficiently and allows for the application of an incomplete
sensitivity method.!® This approximation, together with an ad-
ditional constraint on the variation in curvature along the channel
walls, can be used to effectively minimize the whole-field disper-
sion of the analyte band. Further constraints on the maximum
allowable constriction were also added to the optimization routine.
For example, we will later present optimization results where the
solver varies the shape of the turn while constraining the width
to at least one-third of the original channel width.

Using the cost function described above, the, fully automated
optimization routine performs several tasks. A constant radius turn
is first provided as the initial geometry. The boundary of the turn
is discretized into ~200 elements and the area defined by the
boundaries is discretized into ~6000 triangular elements. The
gradient of the cost function with respect to independent pertur-
bance of each boundary element is calculated by using the
incomplete sensitivity method. The new perturbed shape is
determined and the deformations are then smoothed within a
regularity tolerance. Next, the routine either regenerates (for large
variations from the original shape) or deforms the mesh describ-
ing the channel geometry. The electrokinetic velocity field in the
channel is then calculated, and the value of the cost function is
redetermined. This process is repeated until the cost function
reaches a local minimum or is reduced to within a specified
tolerance.

EXPERIMENTAL SECTION
Channel Fabrication. To validate our flow field predictions

and investigate the performance of our designs, channels were
fabricated in UV-transparent poly(methyl methacrylate) (PMMA)
using a 125-um-diameter end mill. A PMMA cover was thermally
bonded in a pneumatic press onto the machined piece to complete
the fluidic channels. The bonding was performed at 120 °C in a
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vacuum with a clamping pressure of 20 psi. The bonded channels
were then placed in a custom fixture that provides wells for
inserting electrodes and allows for pressure filling of liquids into
the channels.

Imaging Techniques. The dispersions caused by various turn
designs were observed experimentally using photobleached-
fluorescence and caged-fluorescence visualization techniques.
Both techniques provide an “optical injection” of a tracer molecule.
The caged-fluorescence technique has been used to study elec-
trokinetic and pressure-driven flows in capillaries.?? This tech-
nique relies on caged dyes that are not fluorescent until UV light
photocleaves a caging group in the dye molecule, and the new,
cleaved, molecular species is then able to fluoresce. In the caged-
fluorescence imaging experiments, the channels were filled with
a 400 uM solution of bis(5-carboxymethoxy-2-nitrobenzyl) ether,
dipotassium salt (CMNB-caged fluorescein, Molecular Probes,
Inc.) dissolved in deionized water. The uncaging was performed
using a single pulse (355 nm, 500 w«J) from a frequency-tripled
Nd:YAG laser (Continuum) focused to ~100 um by 2 mm area.
After initiation, the marked region was excited with a mercury
lamp using standard epifluorescence filter sets for fluorescein
(Omega Optical, Inc.). Images were collected with the 10x
objective (NA = 0.3) of an epifluorescence microscope (Olympus)
and a 656 x 496, video rate, back-illuminated CCD camera
(PixelVision Inc.). Image capture and the “optical injection” were
synchronized using a two-channel, digital delay generator (Ber-
keley Nucleonics Corp.).

The photobleached-fluorescence imaging technique was re-
cently developed by Mosier and Santiago® for imaging of flows
in microfluidic devices. This technique marks a region in the flow
field by bleaching a dark line in a bright, fluorescent background.
For the current work, the channels were filled with a 10 uM
solution of a 2 MDa dextran—fluorescein conjugate (Molecular
Probes, Inc.) dissolved in deionized water. A 0.5-W argon ion
continuous wave laser beam (Lexel Laser, Inc.) was focused
through a 10x microscope objective (NA = 0.3) and translated
across the channel to create a photobleached time line. After
initiation, the channel is illuminated with a mercury lamp using a
standard epifluorescence filter set for fluorescein. Images were
collected with the 10x objective (NA = 0.3) of an epifluorescence
microscope and a MicroMax, 1300 x 1030 CCD camera (Princeton
Instruments).

RESULTS AND DISCUSSION
Constant Radius Turns. Simulations and experiments verify

the large dispersion caused by constant radius turns as predicted
by eq 5, for tym greater than 100. A representative simulation is
shown in Figure 6 and compared with photobleached-fluorescence
imaging in the same geometry. In both the experiment and
simulation, tyr, is equal to 500. The extracted linear skews (as
defined in Figure 1) for the simulation and experiment shown in
Figure 6 are 750 and 800 um, respectively. Equation 5 predicts
that the turn is in the pure advection limit (62/02y.x = 1.0) and

(21) Herr, A. E.; Molho, J. I.; Santiago, J. G.; Mungal, M. G.; Kenny, T. W.;
Garguilo, M. G. Anal. Chem. 2000, 72, 1053—1057.

(22) Paul, P. H.; Garguilo, M. G.; Rakestraw, D. J. Anal. Chem. 1998, 70, 2459—
2467.

(23) Mosier, B. P.; Santiago, J. G. 2000 ASME International Mechanical
Engineering Congress and Exposition, Orlando, FL 2000; ASME: New York,
2000; pp 455—459.
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Figure 6. Simulation (left column) and photobleached-fluorescence
visualization (right column) of an analyte band traveling around a
constant radius corner. In both cases the channel is 250 um wide. In
the experiments, the channels were ~40 um deep. The transport ratio,
tum Was ~500.

Figure 7. Simulation (left column) and experiment (right column)
of an analyte band traveling through a constant radius, 180° turn. In
both cases, the channel is 125 yum wide. In the experiments, the
channels were ~70 um deep. The transport ratio, tym is ~60. The
channel outline has been darkened in the experimental images using
an edge detection routine.

yields a skew of 785 um (the channels shown in Figure 6 are 250
um wide). In Figure 7, simulation of a constant radius, 180° turn
is compared with images from a caged-fluorescence experiment.
The extracted linear skews for the simulation and experiment
shown in Figure 7 match within two significant figures and are
equal to 750 um. In both cases, tum is ~60, so that eq 5 gives
0%/ 0%nax = 0.94. Since the dispersion is close to the pure advection
case, we can assume that the skew is still approximately (1202)%2.
In this case, the model predicts a skew of 760 um.



Figure 8. Comparison of electric field in a constant radius (left) and
a compensating corner (right). Contours of constant electric field
strength are shown for the two geometries.

Figure 9. Simulation of the optimized 90° turn, as determined by
the reduced-parameter optimization technique. In this figure, only the
final shape of the analyte band is shown.

Reduced Parameter Simulations and Experiments. Figure
8 compares the simulated electric field strength in a compensating
turn similar to the turn in Figure 5 to the electric field in a constant
radius turn. The compensating corner shown has a significantly
lengthened path line along the inside of the turn. Furthermore, a
charged molecule that approaches the turn along the inside edge
remains in a region of lower electric field strength (note the tilt
of the contour lines approaching and leaving the turn) before
reaching the higher field strength at the constriction. These two
effects combine to help equalize the travel times of particles on
the inside and outside edges of the corner, resulting in less turn
variance.

To evaluate the effectiveness of a compensating turn design,
we extract the turn variance from the simulation and visualization
images. The axial variance of the analyte band is determined by
binning the image in the direction transverse to the channel. This
process results in a one-dimensional, intensity versus axial position
curve. The area variance of this curve is then determined in the
standard manner. When the dispersion is in the pure advection
limit, the turn variance can be calculated by subtracting the band
variance before the turn from the band variance after the turn.

Figure 9 shows the most successful 90° turn design determined
from the reduced parameter optimization. The constriction ratio
is 0.5, and the recovery ratio (as defined in Figure 5) is 1.5. This
design produces a turn variance that is ~5% of the turn variance
that would be caused by a constant radius, 90° turn.

Visualization of a compensating corner having a constriction
ratio of 0.65 is shown Figure 10 and compared to a simulation.
Due to inaccuracies in our channel fabrication process, the turn
geometry shown here differs from the intended, optimized design
shown in Figure 9. We have altered the simulated geometry in
this figure to more closely match the shape of the actual turn
produced with our fabrication process. Here we see that the
simulation accurately reproduces the shape of the analyte band
seen in the experiment including the transient development of
the concentration field while the analyte is in the turn as well as
the final shape of the band. The extracted turn variances for the

Figure 10. Simulation (left column) and caged-fluorescence visu-
alization (right column) of an analyte band traveling through a
compensating turn design. In both cases, the channel is 250 um wide.
In the experiments, the channels were ~40 um deep. Due to
inaccuracies in our channel fabrication process, the turn design shown
here differs from the intended, optimal design shown in Figure 9. We
have altered the simulated geometry to more closely match the shape
of the actual turn that was fabricated. The channel boundaries have
been drawn onto the experimental images. The slight discrepancy
between the simulated and measured band shapes is probably due
to a small residual applied pressure head from a slight well imbalance
or because of small differences between the simulated and as-built
channel geometry.

Figure 11. Series of shapes generated by the large-parameter
optimization routine when the channel width in the turn is constrained
to be at least one-third of the full channel width. The first shape on
the left is the initial condition given to the large-parameter optimization
solver. Shapes 2 and 3 are intermediate shapes generated as the
solver iterates toward an optimal solution. Shape 4 is the final, optimal
design.

simulated and measured compensating turn are 19 and 17% of
the 90° constant radius turn variance, respectively.

Large-Parameter Optimization. We have used the large-
parameter optimization technique described earlier to design an
optimized, compensating 180° turn. For the optimization results
presented here, the solver varied the shape of the inner surface
of the turn, and the channel width was constrained to be at least
33% of the original width. Figure 11 shows a series of intermediate
shapes calculated by the optimization routine as it iterates toward
the optimum solution. Although the optimization routine does not
enforce symmetry, the resulting shape is approximately symmetric
about a vertical line that bisects the turn. In this simulation, we
prevented the solver from modifying the outside wall of the turn
in order to prevent channel designs that would be hard to arrange
in a compact serpentine pattern.

The final, optimized design is shown in Figure 12. Lines of
constant analyte concentration are shown as the analyte band is
exiting the turn. The transport ratio, ty,, is greater than 100; thus
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Figure 12. Corner design determined from the large-parameter
shape optimization routine. The lines shown are lines of constant
concentration and therefore indicate the shape of the analyte band.
The turn variance of this design is less than 0.3% of the turn variance
caused by a constant radius, 180° turn. The constriction of the channel
width was constrained to ensure that the channel is at least 33% of
the full channel width.

the dispersion is in the pure advection regime. This turn produces
a turn variance that is less than 0.3% of the variance caused by a
constant radius, 180° turn, while the width of the turn is at least
33% of the original width. This compensating turn is also quite
compact, which allows for efficient use of space in a miniaturized
CE system.

Tradeoffs between Reduced Skew, Constrictions, and
Turn Length. Since the skew decreases with reduction in channel
width, it may be tempting to further constrict the channel in the
turn. However, there are reasons why excessive channel constric-
tions should be avoided. For example, the increased field strength
in the turn will cause unwanted Joule heating and temperature
gradients, possibly leading to increased dispersion or even bubble
formation in the turns (since gas solubility limits are reduced by
increasing temperature). Another reason to avoid excessive
constrictions is that Ly,n/w increases as w decreases (note that
Pe,, is the same in the turn since the electric field increases as w
decreases). Since the compensating turns work best in the pure
advection regime (twm > 100), decreasing w increases the
minimum Pe,, for which the compensating turn will be effective.
While the maximum allowable channel constriction may vary with
the specific application, the large-parameter optimization method
presented here allows minimization of the turn dispersion for a
specified maximum channel constriction. Thus, we have mini-
mized the turn dispersion caused by a 180° turn, while increasing
the minimum channel width in the turn by 30%, as compared to
the most effective turn design presented by Paegel et al.?

Comparison of Compensating and Constant Radius Ser-
pentine Channels. We can use eq 6 to compare the separation
resolution of a serpentine channel composed of 180° compensating
turns to the separation resolution of a serpentine channel
composed of constant radius 180° turns. Figure 13 shows a plot
of eq 6 for serpentine channels composed of the compensating
corner shown in Figure 12 and constant radius 180° turns. In both
cases, we assume that the dispersion created by the turns is in
the pure advection regime. We further assume for the following
examples that the initial sample injection is a plug with an axial
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Figure 13. Plot of the serpentine-to-straight channel resolution ratio
given by eq 6 for serpentine channels composed of constant radius,
180° turns and the compensating 180° turn shown in Figure 12. Here
we assumed that the dispersion caused by both turns is in the pure
advection regime (tum > 100) and that the injection variance is equal
to w2/12, where w is the width of the channel (i.e., the injection was
assumed to be a rectangular plug, with an axial length equal to one
channel width).

length equal to the channel width and, thus, having a correspond-
ing injection variance of w?/12 (where w is the channel width).
In addition, we assume that complementary turns do not reduce
the turn dispersion as in Figure 3c. The separation resolution of
a serpentine channel approaches that of a straight channel as
tenannet decreases (as the length of the serpentine channel increases
or Pe, decreases). As an example, we will use separation
conditions from previous microchip separations of human serum
proteins (19G, transferrin, o-1-antitrypsin, albumin) presented by
Colyer et al.?* In this separation, transferrin had a velocity of ~1.6
mm/s (estimated from the reported electropherograms and
separation lengths) and the separation channel had a width of 66
um. The diffusion coefficient for transferrin has been reported
as 6 x 1077 cm?/s. Thus, in the work by Colyer et al., the Pe,
associated with the electrokinetic transport of transferrin is 1800.
Using these conditions, we now consider a hypothetical separation
of analytes in a serpentine microchannel with 10 turns, L = 10
cm, Pe,, = 1800, and w = 66 um. For this example, tehannet = 1 and
Figure 13 shows that, a serpentine channel composed of constant
radius 180° turns, has a separation resolution that is 25% of the
separation resolution of a straight channel of equal length. In
contrast, if the serpentine channel is composed of the compensat-
ing turn shown in Figure 12, the separation resolution will be 98%
of the separation resolution of a straight channel of equal length.
If only one turn is required, the turn-to-straight channel ratio of
separation resolutions of the constant radius and compensating
serpentine channels increases to 62 and 99%, respectively.

We can use eq 7 and eq 8 to design a miniaturized CE system
with a constrained footprint. For this example, we use separation
conditions from microchip protein separation experiments per-

(24) Colyer, C. L.; Mangru, S. D.; Harrison, D. J. J. Chromatogr.,A 1997, 781,
271-276.



formed by Liu et al.Z In this work, 5-lactoglobulin A was separated
from f-lactoglobulin B and a-lactalbumin with a velocity of ~0.75
mm/s (the applied to field strength was 500 V/cm) in a separation
channel with a width of 45 um. A diffusion coefficient of 7 x 1077
cm?/s has been reported! for S-lactoglobulin. Thus, in the work
by Liu et al., the Pe, associated with the electrokinetic transport
of p-lactoglobulin is 500. Using the above conditions, we consider
a hypothetical system where the analytes separate in a micro-
channel with Pe,, = 500 and w = 45 um. Furthermore, we would
like to design the separation channel so that the separation can
be performed within a 2 cm x 2 cm area using 90° turns. We will
consider two serpentine channels: a serpentine channel composed
of constant radius, 90° turns and a serpentine channel composed
of the compensating turn shown in Figure 9. For this example,
L, = 2.8 cm, since the maximum linear dimension is the diagonal
of the 2 cm x 2 cm area. We further assume in this example that
the dispersion caused by the turns is in the pure advection regime
and that one turn will be required approximately every 2 cm of
channel length. Note that even if the 90° turns could be arranged
in a complimentary order, Pe,, < 100L,/w, so complimentary turns
will not effectively reduce the turn dispersion in this example.
Equation 8 shows that the serpentine channel composed of
constant radius turns must be 1.26 times longer than L, to have
a separation resolution equal to that of the straight channel of
length L,. In other words, 26% of the separation length is “wasted”
because of dispersion caused by the first turn. In contrast, the
serpentine channel composed of the compensating turn in Figure
9 must only be 1.02 times longer than L, to have a separation
resolution equal to that of the straight channel of length L. If the
separation resolution of the serpentine channel must be twice that
of the straight channel of length L,, then the length of the constant
radius serpentine channel must be 5.8 times longer than L,,
requiring seven turns. For this same case, the compensating
serpentine channel must be 4.1 times longer than L,, requiring
five turns (as compared to an ideal serpentine channel that would
have to be 4.0 times longer than L,, requiring five turns).

When confined to a 2 cm x 2 cm area, neither the constant
radius serpentine channel nor the compensating serpentine
channel performs as well as a straight channel of equal length.
The criteria of eq 7 can determine the required minimum distance
between turns so that the turn dispersion has a negligible effect
on the separation resolution. The constant radius serpentine
channel requires more than 1 m between turns to have a
separation resolution equal to that of a straight channel of equal
length. This distance between turns is not achievable in a
microfluidic device. On the other hand, the compensating ser-
pentine channel has a separation resolution equal to that of a
straight channel of equal length, when the distance between turns
at least 5 cm. This distance between turns is realizable with current
fabrication techniques, if the larger footprint is tolerable. As a final
example, when Pe,, = 1000 and w = 100 um, the 180° compensat-
ing turn in Figure 12 contributes negligible turn variance when
the distance between turns is at least 5.0 mm.

CONCLUSIONS
We have presented scaling arguments to describe the three

regimes of the advection—diffusion equation as it is applied to

(25) Liu, Y. J.; Foote, R. S.; Jacobson, S. C.; Ramsey, R. S.; Ramsey, J. M. Anal.
Chem. 2000, 72, 4608—4613.

the geometric dispersion caused by turns in microchannels that
are used for electrokinetic separations. These regimes are the
axial diffusion limit, the Taylor—Aris limit, and the pure advection
limit. An analytical model was presented that predicts the disper-
sion caused by constant radius turns and that is valid across all
of the above regimes. Using this model, we have shown that when
the transport ratio, tym, is less than 1, the turn dispersion is in
the Taylor—Aris or pure diffusion limit and the turn geometry is
unimportant. When ty,, is greater than 100, the turn dispersion
is in the pure advection regime and is strongly influenced by the
turn geometry. For this case, we have used simulation and
optimization tools to desigh compensating turns, including a 180°
turn that produces 0.3% of the turn variance produced by a
constant radius, 180° turn. The design rules we propose suggest
that a 10-cm compensating serpentine channel can be made within
a2cm x 2 cm area having a separation resolution that is 98% of
the separation resolution of a 10-cm, straight channel.

APPENDIX A
Here we give a brief overview of the moment method of Aris32

used to derive eq 5. We start with a nondimensionalized form of
the two-dimensional advective—diffusion equation.
dc d , ¥c , dc

—=—Peu(m) - +—+

ot ac m? e’ (A1)

Here, c is the concentration, ¢ = x/w, n = y/w, r = Dt/w?, and
u(xn) is the normalized velocity relative to a frame of reference
moving at the average velocity. The variables x, y, w, and D are
the axial coordinate, the transverse coordinate, the channel width,
and the diffusion coefficient, respectively. Using eq 4, the
transformed velocity is u(y) = 2(w/r;)(1/2 — 7). We define the
following integral quantities that will be used in the derivation.

C,n. 1) = [ c(C n, D)EdE (A2)

my(0) = [°Cy(n, ) dy (A3)

The quantity m, is defined as the pth moment of the concentration.
Here, p can be any integer greater or equal to zero. The variance,
0%, can be determined from the second moment, m, by noting
that o = w?(m,/my).

Multiplying eq A-1 by &P and integrating over ¢ gives the
following differential equation for C,.

aC, ¥’C,
5, = ~PeupC,  +pp — Cy, + a (A4)

Integrating eq A-4 over n give gives the following differential
equation for my,

om, 1
=7 =P —Dm,_, —Pe, [[C,,u() dy  (AS)

With the boundary conditions dc/dn = 0 at the walls and the
initial condition that m; = 0, eq A-4 and eq A-5 form a set of
differential equations that can be solved for m,(z). For the linear
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velocity profile considered here, the analysis is greatly simplified
when the concentration profile of the analyte band entering the
turn is either symmetric or antisymmetric about = 1/, so that
dm;/dz = 0. This symmetry constraint is met, for example, if the
initial analyte concentration has a plug profile or the skewed profile
shown in Figure 1. Once my() is know, the variance o(tym)? is
readily found from ¢? = w?(m,/mg) and algebraic substitutions.
This result is given in eq 5.

The moment method described can be used to find effective
diffusion coefficients by determining the behavior of my(z) as ¢
approaches infinity. An effective diffusion coefficient accurately
describes dispersion in the Taylor—Aris regime shown in Figure
2. Here, we have solved for my(z) for all 7, and therefore, our

(26) Deen, W. M. Analysis of Transport Phenomena; Oxford University Press:
New York, 1998.
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model for the dispersion caused by constant radius turns is valid
for all the regimes of Figure 2.
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